ELECTROCHEMICAL AND STRUCTURAL INVESTIGATIONS OF HYBRID Mg-BASED MATERIALS FOR HYDROGEN STORAGE

Maciej Jarzebski, Mieczyslaw Jurczyk

Institute of Materials Science Engineering, Poznan University of Technology

Abstract

Novel nanocomposite hydride materials proposed for anodes in hydride based rechargeable Ni-MH$_x$ batteries may successfully solve problem of energy storage. Mixed of minimum two different hydrogen storage phases like a A$_2$B – AB$_5$, A$_2$B – AB$_2$ or A$_2$B – AB$_2$ – AB$_5$ we called hybrid structure. We used the mechanical alloying process (MA) for mixed two components: a major component having good hydrogen storage properties and a minor component used as surface activator.

In this work, we have synthesized an amorphous hybrid Mg$_2$Ni-Ni$_x$-30%La ($x=50, 100\%$) nanocomposites. The starting material which was Mg$_2$Ni electrode, mechanically alloyed and annealed, displayed the maximum discharge capacity (100 mAh·g$^{-1}$) at the 1st cycle but degraded strongly with cycling. The poor cyclic behavior of Mg$_2$Ni electrodes is attributed to the formation of Mg(OH)$_2$ on the electrodes, which has been considered to arise from the charge-discharge cycles. To avoid the surface oxidation, we have examined the effect of nickel and/or lanthanum addition in Mg$_2$Ni-type material. This alloying greatly improved the discharge capacities. For example, Mg$_2$Ni-Ni$_x$-30%La ($x=50, 100\%$) alloys presents higher electrochemical capacities than Mg$_2$Ni or (MgH$_2$)$_2$Ni-Ni$_x$-30%La.

To improve the electrochemical behavior of Mg(MgH$_2$)$_2$Ni-Ni$_x$-30%La alloys additionally 50 and 100wt.% nickel was added. For example, amorphous Mg$_2$Ni-Ni$_x$-30%La ($x=50, 100\%$) alloys presents higher electrochemical discharge capacity than (MgH$_2$)$_2$Ni-Ni$_x$-30%La ($x=50,100\%$) on the average about 50%. Nickel addition improve discharge capacity from 46 (50%) to 116 (100%) mAhg$^{-1}$ (1st cycle) and form 40 to 76 mAhg$^{-1}$ (10th cycle) in Mg-alloys. For the MgH$_2$-alloys, discharge capacity increases from 58 (50%) to 71 (100%) mAhg$^{-1}$ (1st cycle) and from 22 to 38 mAhg$^{-1}$ (10th cycle). Extra 5% Palladium addition to Mg$_2$Ni-Ni100%-30%La improved discharge capacity of about 10%.

We also investigated structure of synthesized materials. For comparison we used magnesium and magnesium hydride as a starting material. The DSC examinations of MgH$_2$ – based materials, shows that total hydrogen liberated at two different temperatures, over 275°C and 550°C respectively.

Author did not supply full text of the paper/poster.